Network intrusion detection systems (NIDS) to detect malicious attacks continues to meet challenges. NIDS are vulnerable to auto-generated port scan infiltration attempts and NIDS are often developed offline, resulting in a time lag to prevent the spread of infiltration to other parts of a network. To address these challenges, we use hypergraphs to capture evolving patterns of port scan attacks via the set of internet protocol addresses and destination ports, thereby deriving a set of hypergraph-based metrics to train a robust and resilient ensemble machine learning (ML) NIDS that effectively monitors and detects port scanning activities and adversarial intrusions while evolving intelligently in real-time. Through the combination of (1) intrusion examples, (2) NIDS update rules, (3) attack threshold choices to trigger NIDS retraining requests, and (4) production environment with no prior knowledge of the nature of network traffic 40 scenarios were auto-generated to evaluate the ML ensemble NIDS comprising three tree-based models. Results show that under the model settings of an Update-ALL-NIDS rule (namely, retrain and update all the three models upon the same NIDS retraining request) the proposed ML ensemble NIDS produced the best results with nearly 100% detection performance throughout the simulation, exhibiting robustness in the complex dynamics of the simulated cyber-security scenario.
translated by 谷歌翻译
Artificial Intelligence (AI) is one of the most transformative technologies of the 21st century. The extent and scope of future AI capabilities remain a key uncertainty, with widespread disagreement on timelines and potential impacts. As nations and technology companies race toward greater complexity and autonomy in AI systems, there are concerns over the extent of integration and oversight of opaque AI decision processes. This is especially true in the subfield of machine learning (ML), where systems learn to optimize objectives without human assistance. Objectives can be imperfectly specified or executed in an unexpected or potentially harmful way. This becomes more concerning as systems increase in power and autonomy, where an abrupt capability jump could result in unexpected shifts in power dynamics or even catastrophic failures. This study presents a hierarchical complex systems framework to model AI risk and provide a template for alternative futures analysis. Survey data were collected from domain experts in the public and private sectors to classify AI impact and likelihood. The results show increased uncertainty over the powerful AI agent scenario, confidence in multiagent environments, and increased concern over AI alignment failures and influence-seeking behavior.
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
超过30亿人缺乏护理皮肤病。AI诊断工具可能有助于早期皮肤癌检测;然而,大多数模型尚未在不同肤色或罕见疾病的图像上进行评估。为了解决这个问题,我们策划了多样化的皮肤科(DDI)DataSet - 这是一种具有不同皮肤色调的第一个公开的,病理证实的图像。我们展示了最先进的皮肤科AI模型在DDI上表现得很糟糕,ROC-AUC与模型的原始结果相比下降29-40%。我们发现暗肤色和罕见的疾病,在DDI数据集中提供良好,导致性能下降。此外,我们表明,无需多样化培训数据,我们表明最先进的强大培训方法无法纠正这些偏差。我们的研究结果确定了需要解决的皮肤病学AI中的重要弱点和偏见,以确保可靠应用于各种患者和所有疾病。
translated by 谷歌翻译
In manufacturing, the production is often done on out-of-the-shelf manufacturing lines, whose underlying scheduling heuristics are not known due to the intellectual property. We consider such a setting with a black-box job-shop system and an unknown scheduling heuristic that, for a given permutation of jobs, schedules the jobs for the black-box job-shop with the goal of minimizing the makespan. Here, the jobs need to enter the job-shop in the given order of the permutation, but may take different paths within the job shop, which depends on the black-box heuristic. The performance of the black-box heuristic depends on the order of the jobs, and the natural problem for the manufacturer is to find an optimum ordering of the jobs. Facing a real-world scenario as described above, we engineer the Monte-Carlo tree-search for finding a close-to-optimum ordering of jobs. To cope with a large solutions-space in planning scenarios, a hierarchical Monte-Carlo tree search (H-MCTS) is proposed based on abstraction of jobs. On synthetic and real-life problems, H-MCTS with integrated abstraction significantly outperforms pure heuristic-based techniques as well as other Monte-Carlo search variants. We furthermore show that, by modifying the evaluation metric in H-MCTS, it is possible to achieve other optimization objectives than what the scheduling heuristics are designed for -- e.g., minimizing the total completion time instead of the makespan. Our experimental observations have been also validated in real-life cases, and our H-MCTS approach has been implemented in a production plant's controller.
translated by 谷歌翻译
Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, the state-of-the-art in unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches.
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
This paper presents a methodology for combining programming and mathematics to optimize elevator wait times. Based on simulated user data generated according to the canonical three-peak model of elevator traffic, we first develop a naive model from an intuitive understanding of the logic behind elevators. We take into consideration a general array of features including capacity, acceleration, and maximum wait time thresholds to adequately model realistic circumstances. Using the same evaluation framework, we proceed to develop a Deep Q Learning model in an attempt to match the hard-coded naive approach for elevator control. Throughout the majority of the paper, we work under a Markov Decision Process (MDP) schema, but later explore how the assumption fails to characterize the highly stochastic overall Elevator Group Control System (EGCS).
translated by 谷歌翻译
噪声的去除或取消对成像和声学具有广泛的应用。在日常生活中,Denoising甚至可能包括对地面真理不忠的生成方面。但是,对于科学应用,denoing必须准确地重现地面真相。在这里,我们展示了如何通过深层卷积神经网络来定位数据,从而以定量精度出现弱信号。特别是,我们研究了晶体材料的X射线衍射。我们证明,弱信号是由电荷排序引起的,在嘈杂的数据中微不足道的信号,在DeNo的数据中变得可见和准确。通过对深度神经网络的监督培训,具有成对的低噪声数据,可以通过监督培训来实现这一成功。这样,神经网络就可以了解噪声的统计特性。我们证明,使用人造噪声(例如泊松和高斯)不会产生这种定量准确的结果。因此,我们的方法说明了一种实用的噪声过滤策略,可以应用于具有挑战性的获取问题。
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译